Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Low-Rank Tensor Decomposition-Aided Channel Estimation for Millimeter Wave MIMO-OFDM Systems (1609.03355v2)

Published 12 Sep 2016 in cs.IT and math.IT

Abstract: We consider the problem of downlink channel estimation for millimeter wave (mmWave) MIMO-OFDM systems, where both the base station (BS) and the mobile station (MS) employ large antenna arrays for directional precoding/beamforming. Hybrid analog and digital beamforming structures are employed in order to offer a compromise between hardware complexity and system performance. Different from most existing studies that are concerned with narrowband channels, we consider estimation of wideband mmWave channels with frequency selectivity, which is more appropriate for mmWave MIMO-OFDM systems. By exploiting the sparse scattering nature of mmWave channels, we propose a CANDECOMP/PARAFAC (CP) decomposition-based method for channel parameter estimation (including angles of arrival/departure, time delays, and fading coefficients). In our proposed method, the received signal at the BS is expressed as a third-order tensor. We show that the tensor has the form of a low-rank CP decomposition, and the channel parameters can be estimated from the associated factor matrices. Our analysis reveals that the uniqueness of the CP decomposition can be guaranteed even when the size of the tensor is small. Hence the proposed method has the potential to achieve substantial training overhead reduction. We also develop Cramer-Rao bound (CRB) results for channel parameters, and compare our proposed method with a compressed sensing-based method. Simulation results show that the proposed method attains mean square errors that are very close to their associated CRBs, and presents a clear advantage over the compressed sensing-based method in terms of both estimation accuracy and computational complexity.

Citations (199)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.