Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Finite-sample and asymptotic analysis of generalization ability with an application to penalized regression (1609.03344v2)

Published 12 Sep 2016 in stat.ML, cs.LG, math.ST, q-fin.EC, stat.CO, and stat.TH

Abstract: In this paper, we study the performance of extremum estimators from the perspective of generalization ability (GA): the ability of a model to predict outcomes in new samples from the same population. By adapting the classical concentration inequalities, we derive upper bounds on the empirical out-of-sample prediction errors as a function of the in-sample errors, in-sample data size, heaviness in the tails of the error distribution, and model complexity. We show that the error bounds may be used for tuning key estimation hyper-parameters, such as the number of folds $K$ in cross-validation. We also show how $K$ affects the bias-variance trade-off for cross-validation. We demonstrate that the $\mathcal{L}_2$-norm difference between penalized and the corresponding un-penalized regression estimates is directly explained by the GA of the estimates and the GA of empirical moment conditions. Lastly, we prove that all penalized regression estimates are $L_2$-consistent for both the $n \geqslant p$ and the $n < p$ cases. Simulations are used to demonstrate key results. Keywords: generalization ability, upper bound of generalization error, penalized regression, cross-validation, bias-variance trade-off, $\mathcal{L}_2$ difference between penalized and unpenalized regression, lasso, high-dimensional data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.