Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Multiplex lexical networks reveal patterns in early word acquisition in children (1609.03207v2)

Published 11 Sep 2016 in physics.soc-ph, cond-mat.dis-nn, cs.CL, and cs.LG

Abstract: Network models of language have provided a way of linking cognitive processes to the structure and connectivity of language. However, one shortcoming of current approaches is focusing on only one type of linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N=529 words/nodes are connected according to four types of relationships: (i) free associations, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We provide analysis of the topology of the resulting multiplex and then proceed to evaluate single layers as well as the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the emerging multiplex network topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex topology is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.