Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Style-Transfer via Texture-Synthesis (1609.03057v3)

Published 10 Sep 2016 in cs.CV

Abstract: Style-transfer is a process of migrating a style from a given image to the content of another, synthesizing a new image which is an artistic mixture of the two. Recent work on this problem adopting Convolutional Neural-networks (CNN) ignited a renewed interest in this field, due to the very impressive results obtained. There exists an alternative path towards handling the style-transfer task, via generalization of texture-synthesis algorithms. This approach has been proposed over the years, but its results are typically less impressive compared to the CNN ones. In this work we propose a novel style-transfer algorithm that extends the texture-synthesis work of Kwatra et. al. (2005), while aiming to get stylized images that get closer in quality to the CNN ones. We modify Kwatra's algorithm in several key ways in order to achieve the desired transfer, with emphasis on a consistent way for keeping the content intact in selected regions, while producing hallucinated and rich style in others. The results obtained are visually pleasing and diverse, shown to be competitive with the recent CNN style-transfer algorithms. The proposed algorithm is fast and flexible, being able to process any pair of content + style images.

Citations (131)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.