Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fashion DNA: Merging Content and Sales Data for Recommendation and Article Mapping (1609.02489v1)

Published 8 Sep 2016 in cs.IR and cs.LG

Abstract: We present a method to determine Fashion DNA, coordinate vectors locating fashion items in an abstract space. Our approach is based on a deep neural network architecture that ingests curated article information such as tags and images, and is trained to predict sales for a large set of frequent customers. In the process, a dual space of customer style preferences naturally arises. Interpretation of the metric of these spaces is straightforward: The product of Fashion DNA and customer style vectors yields the forecast purchase likelihood for the customer-item pair, while the angle between Fashion DNA vectors is a measure of item similarity. Importantly, our models are able to generate unbiased purchase probabilities for fashion items based solely on article information, even in absence of sales data, thus circumventing the "cold-start problem" of collaborative recommendation approaches. Likewise, it generalizes easily and reliably to customers outside the training set. We experiment with Fashion DNA models based on visual and/or tag item data, evaluate their recommendation power, and discuss the resulting article similarities.

Citations (49)

Summary

We haven't generated a summary for this paper yet.