Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Demixing Sines and Spikes: Robust Spectral Super-resolution in the Presence of Outliers (1609.02247v3)

Published 8 Sep 2016 in math.OC, cs.IT, and math.IT

Abstract: We consider the problem of super-resolving the line spectrum of a multisinusoidal signal from a finite number of samples, some of which may be completely corrupted. Measurements of this form can be modeled as an additive mixture of a sinusoidal and a sparse component. We propose to demix the two components and super-resolve the spectrum of the multisinusoidal signal by solving a convex program. Our main theoretical result is that-- up to logarithmic factors-- this approach is guaranteed to be successful with high probability for a number of spectral lines that is linear in the number of measurements, even if a constant fraction of the data are outliers. The result holds under the assumption that the phases of the sinusoidal and sparse components are random and the line spectrum satisfies a minimum-separation condition. We show that the method can be implemented via semidefinite programming and explain how to adapt it in the presence of dense perturbations, as well as exploring its connection to atomic-norm denoising. In addition, we propose a fast greedy demixing method which provides good empirical results when coupled with a local nonconvex-optimization step.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube