Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation (1609.02208v1)

Published 7 Sep 2016 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Estimators of information theoretic measures such as entropy and mutual information are a basic workhorse for many downstream applications in modern data science. State of the art approaches have been either geometric (nearest neighbor (NN) based) or kernel based (with a globally chosen bandwidth). In this paper, we combine both these approaches to design new estimators of entropy and mutual information that outperform state of the art methods. Our estimator uses local bandwidth choices of $k$-NN distances with a finite $k$, independent of the sample size. Such a local and data dependent choice improves performance in practice, but the bandwidth is vanishing at a fast rate, leading to a non-vanishing bias. We show that the asymptotic bias of the proposed estimator is universal; it is independent of the underlying distribution. Hence, it can be pre-computed and subtracted from the estimate. As a byproduct, we obtain a unified way of obtaining both kernel and NN estimators. The corresponding theoretical contribution relating the asymptotic geometry of nearest neighbors to order statistics is of independent mathematical interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Weihao Gao (30 papers)
  2. Sewoong Oh (128 papers)
  3. Pramod Viswanath (105 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.