Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation (1609.02208v1)

Published 7 Sep 2016 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Estimators of information theoretic measures such as entropy and mutual information are a basic workhorse for many downstream applications in modern data science. State of the art approaches have been either geometric (nearest neighbor (NN) based) or kernel based (with a globally chosen bandwidth). In this paper, we combine both these approaches to design new estimators of entropy and mutual information that outperform state of the art methods. Our estimator uses local bandwidth choices of $k$-NN distances with a finite $k$, independent of the sample size. Such a local and data dependent choice improves performance in practice, but the bandwidth is vanishing at a fast rate, leading to a non-vanishing bias. We show that the asymptotic bias of the proposed estimator is universal; it is independent of the underlying distribution. Hence, it can be pre-computed and subtracted from the estimate. As a byproduct, we obtain a unified way of obtaining both kernel and NN estimators. The corresponding theoretical contribution relating the asymptotic geometry of nearest neighbors to order statistics is of independent mathematical interest.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.