Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Deviant Learning Algorithm: Learning Sparse Mismatch Representations through Time and Space (1609.01459v6)

Published 6 Sep 2016 in cs.AI and cs.NE

Abstract: Predictive coding (PDC) has recently attracted attention in the neuroscience and computing community as a candidate unifying paradigm for neuronal studies and artificial neural network implementations particularly targeted at unsupervised learning systems. The Mismatch Negativity (MMN) has also recently been studied in relation to PC and found to be a useful ingredient in neural predictive coding systems. Backed by the behavior of living organisms, such networks are particularly useful in forming spatio-temporal transitions and invariant representations of the input world. However, most neural systems still do not account for large number of synapses even though this has been shown by a few machine learning researchers as an effective and very important component of any neural system if such a system is to behave properly. Our major point here is that PDC systems with the MMN effect in addition to a large number of synapses can greatly improve any neural learning system's performance and ability to make decisions in the machine world. In this paper, we propose a novel bio-mimetic computational intelligence algorithm -- the Deviant Learning Algorithm, inspired by these key ideas and functional properties of recent brain-cognitive discoveries and theories. We also show by numerical experiments guided by theoretical insights, how our invented bio-mimetic algorithm can achieve competitive predictions even with very small problem specific data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.