Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fourier-sparse interpolation without a frequency gap (1609.01361v1)

Published 6 Sep 2016 in cs.DS

Abstract: We consider the problem of estimating a Fourier-sparse signal from noisy samples, where the sampling is done over some interval $[0, T]$ and the frequencies can be "off-grid". Previous methods for this problem required the gap between frequencies to be above 1/T, the threshold required to robustly identify individual frequencies. We show the frequency gap is not necessary to estimate the signal as a whole: for arbitrary $k$-Fourier-sparse signals under $\ell_2$ bounded noise, we show how to estimate the signal with a constant factor growth of the noise and sample complexity polynomial in $k$ and logarithmic in the bandwidth and signal-to-noise ratio. As a special case, we get an algorithm to interpolate degree $d$ polynomials from noisy measurements, using $O(d)$ samples and increasing the noise by a constant factor in $\ell_2$.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.