Papers
Topics
Authors
Recent
2000 character limit reached

Fourier-sparse interpolation without a frequency gap (1609.01361v1)

Published 6 Sep 2016 in cs.DS

Abstract: We consider the problem of estimating a Fourier-sparse signal from noisy samples, where the sampling is done over some interval $[0, T]$ and the frequencies can be "off-grid". Previous methods for this problem required the gap between frequencies to be above 1/T, the threshold required to robustly identify individual frequencies. We show the frequency gap is not necessary to estimate the signal as a whole: for arbitrary $k$-Fourier-sparse signals under $\ell_2$ bounded noise, we show how to estimate the signal with a constant factor growth of the noise and sample complexity polynomial in $k$ and logarithmic in the bandwidth and signal-to-noise ratio. As a special case, we get an algorithm to interpolate degree $d$ polynomials from noisy measurements, using $O(d)$ samples and increasing the noise by a constant factor in $\ell_2$.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.