Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints (1609.01051v2)

Published 5 Sep 2016 in stat.ML

Abstract: This work presents PESMOC, Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints, an information-based strategy for the simultaneous optimization of multiple expensive-to-evaluate black-box functions under the presence of several constraints. PESMOC can hence be used to solve a wide range of optimization problems. Iteratively, PESMOC chooses an input location on which to evaluate the objective functions and the constraints so as to maximally reduce the entropy of the Pareto set of the corresponding optimization problem. The constraints considered in PESMOC are assumed to have similar properties to those of the objective functions in typical Bayesian optimization problems. That is, they do not have a known expression (which prevents gradient computation), their evaluation is considered to be very expensive, and the resulting observations may be corrupted by noise. These constraints arise in a plethora of expensive black-box optimization problems. We carry out synthetic experiments to illustrate the effectiveness of PESMOC, where we sample both the objectives and the constraints from a Gaussian process prior. The results obtained show that PESMOC is able to provide better recommendations with a smaller number of evaluations than a strategy based on random search.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.