Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lexical-Morphological Modeling for Legal Text Analysis (1609.00799v1)

Published 3 Sep 2016 in cs.IR and cs.CL

Abstract: In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a correct answer. The proposed method is based on the combination of several lexical and morphological characteristics, to build a LLM and a set of features for Machine Learning algorithms. We provide a detailed study on the proposed method performance and failure cases, indicating that it is competitive with state-of-the-art approaches on Legal Information Retrieval and Question Answering, while not needing extensive training data nor depending on expert produced knowledge. The proposed method achieved significant results in the competition, indicating a substantial level of adequacy for the tasks addressed.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.