Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding resource states of measurement-based quantum computing is harder than quantum computing (1609.00457v1)

Published 2 Sep 2016 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, and cs.CC

Abstract: Measurement-based quantum computing enables universal quantum computing with only adaptive single-qubit measurements on certain many-qubit states, such as the graph state, the Affleck-Kennedy-Lieb-Tasaki (AKLT) state, and several tensor-network states. Finding new resource states of measurement-based quantum computing is a hard task, since for a given state there are exponentially many possible measurement patterns on the state. In this paper, we consider the problem of deciding, for a given state and a set of unitary operators, whether there exists a way of measurement-based quantum computing on the state that can realize all unitaries in the set, or not. We show that the decision problem is QCMA-hard, which means that finding new resource states of measurement-based quantum computing is harder than quantum computing itself (unless BQP is equal to QCMA). We also derive an upperbound of the decision problem: the problem is in a quantum version of the second level of the polynomial hierarchy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tomoyuki Morimae (85 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.