Papers
Topics
Authors
Recent
2000 character limit reached

Ten Steps of EM Suffice for Mixtures of Two Gaussians (1609.00368v5)

Published 1 Sep 2016 in stat.ML, cs.DS, math.ST, and stat.TH

Abstract: The Expectation-Maximization (EM) algorithm is a widely used method for maximum likelihood estimation in models with latent variables. For estimating mixtures of Gaussians, its iteration can be viewed as a soft version of the k-means clustering algorithm. Despite its wide use and applications, there are essentially no known convergence guarantees for this method. We provide global convergence guarantees for mixtures of two Gaussians with known covariance matrices. We show that the population version of EM, where the algorithm is given access to infinitely many samples from the mixture, converges geometrically to the correct mean vectors, and provide simple, closed-form expressions for the convergence rate. As a simple illustration, we show that, in one dimension, ten steps of the EM algorithm initialized at infinity result in less than 1\% error estimation of the means. In the finite sample regime, we show that, under a random initialization, $\tilde{O}(d/\epsilon2)$ samples suffice to compute the unknown vectors to within $\epsilon$ in Mahalanobis distance, where $d$ is the dimension. In particular, the error rate of the EM based estimator is $\tilde{O}\left(\sqrt{d \over n}\right)$ where $n$ is the number of samples, which is optimal up to logarithmic factors.

Citations (115)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.