Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition (1609.00153v2)

Published 1 Sep 2016 in cs.CV

Abstract: Traditional feature encoding scheme (e.g., Fisher vector) with local descriptors (e.g., SIFT) and recent convolutional neural networks (CNNs) are two classes of successful methods for image recognition. In this paper, we propose a hybrid representation, which leverages the discriminative capacity of CNNs and the simplicity of descriptor encoding schema for image recognition, with a focus on scene recognition. To this end, we make three main contributions from the following aspects. First, we propose a patch-level and end-to-end architecture to model the appearance of local patches, called {\em PatchNet}. PatchNet is essentially a customized network trained in a weakly supervised manner, which uses the image-level supervision to guide the patch-level feature extraction. Second, we present a hybrid visual representation, called {\em VSAD}, by utilizing the robust feature representations of PatchNet to describe local patches and exploiting the semantic probabilities of PatchNet to aggregate these local patches into a global representation. Third, based on the proposed VSAD representation, we propose a new state-of-the-art scene recognition approach, which achieves an excellent performance on two standard benchmarks: MIT Indoor67 (86.2\%) and SUN397 (73.0\%).

Citations (79)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.