Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Two-Stream Motion and Appearance 3D CNNs for Video Classification (1608.08851v2)

Published 31 Aug 2016 in cs.CV

Abstract: The video and action classification have extremely evolved by deep neural networks specially with two stream CNN using RGB and optical flow as inputs and they present outstanding performance in terms of video analysis. One of the shortcoming of these methods is handling motion information extraction which is done out side of the CNNs and relatively time consuming also on GPUs. So proposing end-to-end methods which are exploring to learn motion representation, like 3D-CNN can achieve faster and accurate performance. We present some novel deep CNNs using 3D architecture to model actions and motion representation in an efficient way to be accurate and also as fast as real-time. Our new networks learn distinctive models to combine deep motion features into appearance model via learning optical flow features inside the network.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.