Papers
Topics
Authors
Recent
2000 character limit reached

American Sign Language fingerspelling recognition from video: Methods for unrestricted recognition and signer-independence (1608.08339v1)

Published 30 Aug 2016 in cs.CL and cs.CV

Abstract: In this thesis, we study the problem of recognizing video sequences of fingerspelled letters in American Sign Language (ASL). Fingerspelling comprises a significant but relatively understudied part of ASL, and recognizing it is challenging for a number of reasons: It involves quick, small motions that are often highly coarticulated; it exhibits significant variation between signers; and there has been a dearth of continuous fingerspelling data collected. In this work, we propose several types of recognition approaches, and explore the signer variation problem. Our best-performing models are segmental (semi-Markov) conditional random fields using deep neural network-based features. In the signer-dependent setting, our recognizers achieve up to about 8% letter error rates. The signer-independent setting is much more challenging, but with neural network adaptation we achieve up to 17% letter error rates.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.