Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Utilizing Large Scale Vision and Text Datasets for Image Segmentation from Referring Expressions (1608.08305v1)

Published 30 Aug 2016 in cs.CV

Abstract: Image segmentation from referring expressions is a joint vision and LLMing task, where the input is an image and a textual expression describing a particular region in the image; and the goal is to localize and segment the specific image region based on the given expression. One major difficulty to train such language-based image segmentation systems is the lack of datasets with joint vision and text annotations. Although existing vision datasets such as MS COCO provide image captions, there are few datasets with region-level textual annotations for images, and these are often smaller in scale. In this paper, we explore how existing large scale vision-only and text-only datasets can be utilized to train models for image segmentation from referring expressions. We propose a method to address this problem, and show in experiments that our method can help this joint vision and LLMing task with vision-only and text-only data and outperforms previous results.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.