Papers
Topics
Authors
Recent
2000 character limit reached

Visual Question: Predicting If a Crowd Will Agree on the Answer (1608.08188v1)

Published 29 Aug 2016 in cs.AI, cs.CL, cs.CV, and cs.HC

Abstract: Visual question answering (VQA) systems are emerging from a desire to empower users to ask any natural language question about visual content and receive a valid answer in response. However, close examination of the VQA problem reveals an unavoidable, entangled problem that multiple humans may or may not always agree on a single answer to a visual question. We train a model to automatically predict from a visual question whether a crowd would agree on a single answer. We then propose how to exploit this system in a novel application to efficiently allocate human effort to collect answers to visual questions. Specifically, we propose a crowdsourcing system that automatically solicits fewer human responses when answer agreement is expected and more human responses when answer disagreement is expected. Our system improves upon existing crowdsourcing systems, typically eliminating at least 20% of human effort with no loss to the information collected from the crowd.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.