Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast binary embeddings with Gaussian circulant matrices: improved bounds (1608.06498v2)

Published 23 Aug 2016 in cs.IT, cs.DS, and math.IT

Abstract: We consider the problem of encoding a finite set of vectors into a small number of bits while approximately retaining information on the angular distances between the vectors. By deriving improved variance bounds related to binary Gaussian circulant embeddings, we largely fix a gap in the proof of the best known fast binary embedding method. Our bounds also show that well-spreadness assumptions on the data vectors, which were needed in earlier work on variance bounds, are unnecessary. In addition, we propose a new binary embedding with a faster running time on sparse data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.