Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Low-High Orders of Directed Graphs: Incremental Algorithms and Applications (1608.06462v1)

Published 23 Aug 2016 in cs.DS

Abstract: A flow graph $G=(V,E,s)$ is a directed graph with a distinguished start vertex $s$. The dominator tree $D$ of $G$ is a tree rooted at $s$, such that a vertex $v$ is an ancestor of a vertex $w$ if and only if all paths from $s$ to $w$ include $v$. The dominator tree is a central tool in program optimization and code generation and has many applications in other diverse areas including constraint programming, circuit testing, biology, and in algorithms for graph connectivity problems. A low-high order of $G$ is a preorder $\delta$ of $D$ that certifies the correctness of $D$ and has further applications in connectivity and path-determination problems. In this paper, we first consider how to maintain efficiently a low-high order of a flow graph incrementally under edge insertions. We present algorithms that run in $O(mn)$ total time for a sequence of $m$ edge insertions in an initially empty flow graph with $n$ vertices.These immediately provide the first incremental certifying algorithms for maintaining the dominator tree in $O(mn)$ total time, and also imply incremental algorithms for other problems. Hence, we provide a substantial improvement over the $O(m2)$ simple-minded algorithms, which recompute the solution from scratch after each edge insertion. We also show how to apply low-high orders to obtain a linear-time $2$-approximation algorithm for the smallest $2$-vertex-connected spanning subgraph problem (2VCSS). Finally, we present efficient implementations of our new algorithms for the incremental low-high and 2VCSS problems and conduct an extensive experimental study on real-world graphs taken from a variety of application areas. The experimental results show that our algorithms perform very well in practice.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.