Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Word Embeddings from Intrinsic and Extrinsic Views (1608.05852v1)

Published 20 Aug 2016 in cs.CL and cs.AI

Abstract: While word embeddings are currently predominant for natural language processing, most of existing models learn them solely from their contexts. However, these context-based word embeddings are limited since not all words' meaning can be learned based on only context. Moreover, it is also difficult to learn the representation of the rare words due to data sparsity problem. In this work, we address these issues by learning the representations of words by integrating their intrinsic (descriptive) and extrinsic (contextual) information. To prove the effectiveness of our model, we evaluate it on four tasks, including word similarity, reverse dictionaries,Wiki link prediction, and document classification. Experiment results show that our model is powerful in both word and document modeling.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.