Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Topic Sensitive Neural Headline Generation (1608.05777v1)

Published 20 Aug 2016 in cs.CL

Abstract: Neural models have recently been used in text summarization including headline generation. The model can be trained using a set of document-headline pairs. However, the model does not explicitly consider topical similarities and differences of documents. We suggest to categorizing documents into various topics so that documents within the same topic are similar in content and share similar summarization patterns. Taking advantage of topic information of documents, we propose topic sensitive neural headline generation model. Our model can generate more accurate summaries guided by document topics. We test our model on LCSTS dataset, and experiments show that our method outperforms other baselines on each topic and achieves the state-of-art performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.