Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Solving a Mixture of Many Random Linear Equations by Tensor Decomposition and Alternating Minimization (1608.05749v1)

Published 19 Aug 2016 in cs.LG, cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: We consider the problem of solving mixed random linear equations with $k$ components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample corresponds to which model) are not observed. We give a tractable algorithm for the mixed linear equation problem, and show that under some technical conditions, our algorithm is guaranteed to solve the problem exactly with sample complexity linear in the dimension, and polynomial in $k$, the number of components. Previous approaches have required either exponential dependence on $k$, or super-linear dependence on the dimension. The proposed algorithm is a combination of tensor decomposition and alternating minimization. Our analysis involves proving that the initialization provided by the tensor method allows alternating minimization, which is equivalent to EM in our setting, to converge to the global optimum at a linear rate.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.