Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting enumerative two-part crude MDL for Bernoulli and multinomial distributions (Extended version) (1608.05522v2)

Published 19 Aug 2016 in cs.IT and math.IT

Abstract: We leverage the Minimum Description Length (MDL) principle as a model selection technique for Bernoulli distributions and compare several types of MDL codes. We first present a simplistic crude two-part MDL code and a Normalized Maximum Likelihood (NML) code. We then focus on the enumerative two-part crude MDL code, suggest a Bayesian interpretation for finite size data samples, and exhibit a strong connection with the NML approach. We obtain surprising impacts on the estimation of the model complexity together with superior compression performance. This is then generalized to the case of the multinomial distributions. Both the theoretical analysis and the experimental comparisons suggest that one might use the enumerative code rather than NML in practice, for Bernoulli and multinomial distributions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.