Rényi divergences as weighted non-commutative vector valued $L_p$-spaces (1608.05317v2)
Abstract: We show that Araki and Masuda's weighted non-commutative vector valued $L_p$-spaces [Araki & Masuda, Publ. Res. Inst. Math. Sci., 18:339 (1982)] correspond to an algebraic generalization of the sandwiched R\'enyi divergences with parameter $\alpha = \frac{p}{2}$. Using complex interpolation theory, we prove various fundamental properties of these divergences in the setup of von Neumann algebras, including a data-processing inequality and monotonicity in $\alpha$. We thereby also give new proofs for the corresponding finite-dimensional properties. We discuss the limiting cases $\alpha\to {\frac{1}{2},1,\infty}$ leading to minus the logarithm of Uhlmann's fidelity, Umegaki's relative entropy, and the max-relative entropy, respectively. As a contribution that might be of independent interest, we derive a Riesz-Thorin theorem for Araki-Masuda $L_p$-spaces and an Araki-Lieb-Thirring inequality for states on von Neumann algebras.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.