Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parameterized Principal Component Analysis (1608.04695v2)

Published 16 Aug 2016 in cs.CV

Abstract: When modeling multivariate data, one might have an extra parameter of contextual information that could be used to treat some observations as more similar to others. For example, images of faces can vary by age, and one would expect the face of a 40 year old to be more similar to the face of a 30 year old than to a baby face. We introduce a novel manifold approximation method, parameterized principal component analysis (PPCA) that models data with linear subspaces that change continuously according to the extra parameter of contextual information (e.g. age), instead of ad-hoc atlases. Special care has been taken in the loss function and the optimization method to encourage smoothly changing subspaces across the parameter values. The approach ensures that each observation's projection will share information with observations that have similar parameter values, but not with observations that have large parameter differences. We tested PPCA on artificial data based on known, smooth functions of an added parameter, as well as on three real datasets with different types of parameters. We compared PPCA to PCA, sparse PCA and to independent principal component analysis (IPCA), which groups observations by their parameter values and projects each group using PCA with no sharing of information for different groups. PPCA recovers the known functions with less error and projects the datasets' test set observations with consistently less reconstruction error than IPCA does. In some cases where the manifold is truly nonlinear, PCA outperforms all the other manifold approximation methods compared.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.