Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model (1608.04329v5)

Published 15 Aug 2016 in stat.CO and cs.DC

Abstract: Gibbs sampling is a widely used Markov chain Monte Carlo (MCMC) method for numerically approximating integrals of interest in Bayesian statistics and other mathematical sciences. Many implementations of MCMC methods do not extend easily to parallel computing environments, as their inherently sequential nature incurs a large synchronization cost. In the case study illustrated by this paper, we show how to do Gibbs sampling in a fully data-parallel manner on a graphics processing unit, for a large class of exchangeable models that admit latent variable representations. Our approach takes a systems perspective, with emphasis placed on efficient use of compute hardware. We demonstrate our method on a Horseshoe Probit regression model and find that our implementation scales effectively to thousands of predictors and millions of data points simultaneously.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.