Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Faster Approximation Algorithm for the Gibbs Partition Function (1608.04223v4)

Published 15 Aug 2016 in cs.DS

Abstract: We consider the problem of estimating the partition function $Z(\beta)=\sum_x \exp(-\beta(H(x))$ of a Gibbs distribution with a Hamilton $H(\cdot)$, or more precisely the logarithm of the ratio $q=\ln Z(0)/Z(\beta)$. It has been recently shown how to approximate $q$ with high probability assuming the existence of an oracle that produces samples from the Gibbs distribution for a given parameter value in $[0,\beta]$. The current best known approach due to Huber [9] uses $O(q\ln n\cdot[\ln q + \ln \ln n+\varepsilon{-2}])$ oracle calls on average where $\varepsilon$ is the desired accuracy of approximation and $H(\cdot)$ is assumed to lie in ${0}\cup[1,n]$. We improve the complexity to $O(q\ln n\cdot\varepsilon{-2})$ oracle calls. We also show that the same complexity can be achieved if exact oracles are replaced with approximate sampling oracles that are within $O(\frac{\varepsilon2}{q\ln n})$ variation distance from exact oracles. Finally, we prove a lower bound of $\Omega(q\cdot \varepsilon{-2})$ oracle calls under a natural model of computation.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube