Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Human Pose Estimation from Depth Images via Inference Embedded Multi-task Learning (1608.03932v1)

Published 13 Aug 2016 in cs.CV

Abstract: Human pose estimation (i.e., locating the body parts / joints of a person) is a fundamental problem in human-computer interaction and multimedia applications. Significant progress has been made based on the development of depth sensors, i.e., accessible human pose prediction from still depth images [32]. However, most of the existing approaches to this problem involve several components/models that are independently designed and optimized, leading to suboptimal performances. In this paper, we propose a novel inference-embedded multi-task learning framework for predicting human pose from still depth images, which is implemented with a deep architecture of neural networks. Specifically, we handle two cascaded tasks: i) generating the heat (confidence) maps of body parts via a fully convolutional network (FCN); ii) seeking the optimal configuration of body parts based on the detected body part proposals via an inference built-in MatchNet [10], which measures the appearance and geometric kinematic compatibility of body parts and embodies the dynamic programming inference as an extra network layer. These two tasks are jointly optimized. Our extensive experiments show that the proposed deep model significantly improves the accuracy of human pose estimation over other several state-of-the-art methods or SDKs. We also release a large-scale dataset for comparison, which includes 100K depth images under challenging scenarios.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.