Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Hashing: A Joint Approach for Image Signature Learning (1608.03658v1)

Published 12 Aug 2016 in cs.CV

Abstract: Similarity-based image hashing represents crucial technique for visual data storage reduction and expedited image search. Conventional hashing schemes typically feed hand-crafted features into hash functions, which separates the procedures of feature extraction and hash function learning. In this paper, we propose a novel algorithm that concurrently performs feature engineering and non-linear supervised hashing function learning. Our technical contributions in this paper are two-folds: 1) deep network optimization is often achieved by gradient propagation, which critically requires a smooth objective function. The discrete nature of hash codes makes them not amenable for gradient-based optimization. To address this issue, we propose an exponentiated hashing loss function and its bilinear smooth approximation. Effective gradient calculation and propagation are thereby enabled; 2) pre-training is an important trick in supervised deep learning. The impact of pre-training on the hash code quality has never been discussed in current deep hashing literature. We propose a pre-training scheme inspired by recent advance in deep network based image classification, and experimentally demonstrate its effectiveness. Comprehensive quantitative evaluations are conducted on several widely-used image benchmarks. On all benchmarks, our proposed deep hashing algorithm outperforms all state-of-the-art competitors by significant margins. In particular, our algorithm achieves a near-perfect 0.99 in terms of Hamming ranking accuracy with only 12 bits on MNIST, and a new record of 0.74 on the CIFAR10 dataset. In comparison, the best accuracies obtained on CIFAR10 by existing hashing algorithms without or with deep networks are known to be 0.36 and 0.58 respectively.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.