Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inapproximability Results for Approximate Nash Equilibria (1608.03574v3)

Published 11 Aug 2016 in cs.GT

Abstract: We study the problem of finding approximate Nash equilibria that satisfy certain conditions, such as providing good social welfare. In particular, we study the problem $\epsilon$-NE $\delta$-SW: find an $\epsilon$-approximate Nash equilibrium ($\epsilon$-NE) that is within $\delta$ of the best social welfare achievable by an $\epsilon$-NE. Our main result is that, if the exponential-time hypothesis (ETH) is true, then solving $\left(\frac{1}{8} - \mathrm{O}(\delta)\right)$-NE $\mathrm{O}(\delta)$-SW for an $n\times n$ bimatrix game requires $n{\mathrm{\widetilde \Omega}(\log n)}$ time. Building on this result, we show similar conditional running time lower bounds on a number of decision problems for approximate Nash equilibria that do not involve social welfare, including maximizing or minimizing a certain player's payoff, or finding approximate equilibria contained in a given pair of supports. We show quasi-polynomial lower bounds for these problems assuming that ETH holds, where these lower bounds apply to $\epsilon$-Nash equilibria for all $\epsilon < \frac{1}{8}$. The hardness of these other decision problems has so far only been studied in the context of exact equilibria.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.