Emergent Mind

Abstract

This paper focuses on convex constrained optimization problems, where the solution is subject to a convex inequality constraint. In particular, we aim at challenging problems for which both projection into the constrained domain and a linear optimization under the inequality constraint are time-consuming, which render both projected gradient methods and conditional gradient methods (a.k.a. the Frank-Wolfe algorithm) expensive. In this paper, we develop projection reduced optimization algorithms for both smooth and non-smooth optimization with improved convergence rates under a certain regularity condition of the constraint function. We first present a general theory of optimization with only one projection. Its application to smooth optimization with only one projection yields $O(1/\epsilon)$ iteration complexity, which improves over the $O(1/\epsilon2)$ iteration complexity established before for non-smooth optimization and can be further reduced under strong convexity. Then we introduce a local error bound condition and develop faster algorithms for non-strongly convex optimization at the price of a logarithmic number of projections. In particular, we achieve an iteration complexity of $\widetilde O(1/\epsilon{2(1-\theta)})$ for non-smooth optimization and $\widetilde O(1/\epsilon{1-\theta})$ for smooth optimization, where $\theta\in(0,1]$ appearing the local error bound condition characterizes the functional local growth rate around the optimal solutions. Novel applications in solving the constrained $\ell_1$ minimization problem and a positive semi-definite constrained distance metric learning problem demonstrate that the proposed algorithms achieve significant speed-up compared with previous algorithms.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.