Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A machine learning method for the large-scale evaluation of urban visual environment (1608.03396v1)

Published 11 Aug 2016 in cs.CV, cs.CY, and cs.HC

Abstract: Given the size of modern cities in the urbanising age, it is beyond the perceptual capacity of most people to develop a good knowledge about the beauty and ugliness of the city at every street corner. Correspondingly, for planners, it is also difficult to accurately answer questions like 'where are the worst-looking places in the city that regeneration should give first consideration', or 'in the fast urbanising cities, how is the city appearance changing', etc. To address this issue, we here present a computer vision method for the large-scale and automatic evaluation of the urban visual environment, by leveraging state-of-the-art machine learning techniques and the wide-coverage street view images. From the various factors that are at work, we choose two key features, the visual quality of street facade and the continuity of street wall, as the starting point of this line of analysis. In order to test the validity of this method, we further compare the machine ratings with ratings collected on site from 752 passers-by on fifty-six locations. We show that the machine learning model can produce a good estimation of people's real visual experience, and it holds much potential for various tasks in terms of urban design evaluation, culture identification, etc.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.