Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automatic text extraction and character segmentation using maximally stable extremal regions (1608.03374v1)

Published 11 Aug 2016 in cs.CV

Abstract: Text detection and segmentation is an important prerequisite for many content based image analysis tasks. The paper proposes a novel text extraction and character segmentation algorithm using Maximally Stable Extremal Regions as basic letter candidates. These regions are then subjected to thresholding and thereafter various connected components are determined to identify separate characters. The algorithm is tested along a set of various JPEG, PNG and BMP images over four different character sets; English, Russian, Hindi and Urdu. The algorithm gives good results for English and Russian character set; however character segmentation in Urdu and Hindi language is not much accurate. The algorithm is simple, efficient, involves no overhead as required in training and gives good results for even low quality images. The paper also proposes various challenges in text extraction and segmentation for multilingual inputs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.