Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

When Are Welfare Guarantees Robust? (1608.02402v1)

Published 8 Aug 2016 in cs.GT

Abstract: Computational and economic results suggest that social welfare maximization and combinatorial auction design are much easier when bidders' valuations satisfy the "gross substitutes" condition. The goal of this paper is to evaluate rigorously the folklore belief that the main take-aways from these results remain valid in settings where the gross substitutes condition holds only approximately. We show that for valuations that pointwise approximate a gross substitutes valuation (in fact even a linear valuation), optimal social welfare cannot be approximated to within a subpolynomial factor and demand oracles cannot be simulated using a subexponential number of value queries. We then provide several positive results by imposing additional structure on the valuations (beyond gross substitutes), using a more stringent notion of approximation, and/or using more powerful oracle access to the valuations. For example, we prove that the performance of the greedy algorithm degrades gracefully for near-linear valuations with approximately decreasing marginal values, that with demand queries, approximate welfare guarantees for XOS valuations degrade gracefully for valuations that are pointwise close to XOS, and that the performance of the Kelso-Crawford auction degrades gracefully for valuations that are close to various subclasses of gross substitutes valuations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube