Papers
Topics
Authors
Recent
2000 character limit reached

Learning Joint Representations of Videos and Sentences with Web Image Search (1608.02367v1)

Published 8 Aug 2016 in cs.CV

Abstract: Our objective is video retrieval based on natural language queries. In addition, we consider the analogous problem of retrieving sentences or generating descriptions given an input video. Recent work has addressed the problem by embedding visual and textual inputs into a common space where semantic similarities correlate to distances. We also adopt the embedding approach, and make the following contributions: First, we utilize web image search in sentence embedding process to disambiguate fine-grained visual concepts. Second, we propose embedding models for sentence, image, and video inputs whose parameters are learned simultaneously. Finally, we show how the proposed model can be applied to description generation. Overall, we observe a clear improvement over the state-of-the-art methods in the video and sentence retrieval tasks. In description generation, the performance level is comparable to the current state-of-the-art, although our embeddings were trained for the retrieval tasks.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.