Papers
Topics
Authors
Recent
2000 character limit reached

Deciding structural liveness of Petri nets (1608.02327v1)

Published 8 Aug 2016 in cs.LO

Abstract: Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is the verification of safety and liveness properties in this model; despite the extensive research effort, some basic problems remain open, which is exemplified by the open complexity status of the reachability problem. The liveness problems are known to be closely related to the reachability problem, and many structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem if a net is structurally live, i.e. if there is an initial marking for which it is live, has remained open, as also a paper (Best and Esparza, 2016) emphasizes. Here we show that the structural liveness problem for Petri nets is decidable. A crucial ingredient of the proof is the result by Leroux (LiCS 2013) showing that we can compute a finite (Presburger) description of the reachability set for a marked Petri net if this set is semilinear.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.