Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automating Political Bias Prediction (1608.02195v1)

Published 7 Aug 2016 in cs.SI and cs.CL

Abstract: Every day media generate large amounts of text. An unbiased view on media reports requires an understanding of the political bias of media content. Assistive technology for estimating the political bias of texts can be helpful in this context. This study proposes a simple statistical learning approach to predict political bias from text. Standard text features extracted from speeches and manifestos of political parties are used to predict political bias in terms of political party affiliation and in terms of political views. Results indicate that political bias can be predicted with above chance accuracy. Mistakes of the model can be interpreted with respect to changes of policies of political actors. Two approaches are presented to make the results more interpretable: a) discriminative text features are related to the political orientation of a party and b) sentiment features of texts are correlated with a measure of political power. Political power appears to be strongly correlated with positive sentiment of a text. To highlight some potential use cases a web application shows how the model can be used for texts for which the political bias is not clear such as news articles.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube