Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

OCR of historical printings with an application to building diachronic corpora: A case study using the RIDGES herbal corpus (1608.02153v2)

Published 6 Aug 2016 in cs.CL and cs.DL

Abstract: This article describes the results of a case study that applies Neural Network-based Optical Character Recognition (OCR) to scanned images of books printed between 1487 and 1870 by training the OCR engine OCRopus [@breuel2013high] on the RIDGES herbal text corpus [@OdebrechtEtAlSubmitted]. Training specific OCR models was possible because the necessary ground truth is available as error-corrected diplomatic transcriptions. The OCR results have been evaluated for accuracy against the ground truth of unseen test sets. Character and word accuracies (percentage of correctly recognized items) for the resulting machine-readable texts of individual documents range from 94% to more than 99% (character level) and from 76% to 97% (word level). This includes the earliest printed books, which were thought to be inaccessible by OCR methods until recently. Furthermore, OCR models trained on one part of the corpus consisting of books with different printing dates and different typesets (mixed models) have been tested for their predictive power on the books from the other part containing yet other fonts, mostly yielding character accuracies well above 90%. It therefore seems possible to construct generalized models trained on a range of fonts that can be applied to a wide variety of historical printings still giving good results. A moderate postcorrection effort of some pages will then enable the training of individual models with even better accuracies. Using this method, diachronic corpora including early printings can be constructed much faster and cheaper than by manual transcription. The OCR methods reported here open up the possibility of transforming our printed textual cultural heritage into electronic text by largely automatic means, which is a prerequisite for the mass conversion of scanned books.

Citations (47)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.