Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bridging the Gap: Incorporating a Semantic Similarity Measure for Effectively Mapping PubMed Queries to Documents (1608.01972v2)

Published 5 Aug 2016 in cs.CL and cs.IR

Abstract: The main approach of traditional information retrieval (IR) is to examine how many words from a query appear in a document. A drawback of this approach, however, is that it may fail to detect relevant documents where no or only few words from a query are found. The semantic analysis methods such as LSA (latent semantic analysis) and LDA (latent Dirichlet allocation) have been proposed to address the issue, but their performance is not superior compared to common IR approaches. Here we present a query-document similarity measure motivated by the Word Mover's Distance. Unlike other similarity measures, the proposed method relies on neural word embeddings to compute the distance between words. This process helps identify related words when no direct matches are found between a query and a document. Our method is efficient and straightforward to implement. The experimental results on TREC Genomics data show that our approach outperforms the BM25 ranking function by an average of 12% in mean average precision. Furthermore, for a real-world dataset collected from the PubMed search logs, we combine the semantic measure with BM25 using a learning to rank method, which leads to improved ranking scores by up to 25%. This experiment demonstrates that the proposed approach and BM25 nicely complement each other and together produce superior performance.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.