Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bounded Clique-Width of ($S_{1,2,2}$,Triangle)-Free Graphs (1608.01820v2)

Published 5 Aug 2016 in cs.DM and math.CO

Abstract: If a graph has no induced subgraph isomorphic to $H_1$ or $H_2$ then it is said to be ($H_1,H_2$)-free. Dabrowski and Paulusma found 13 open cases for the question whether the clique-width of ($H_1,H_2$)-free graphs is bounded. One of them is the class of ($S_{1,2,2}$,triangle)-free graphs. In this paper we show that these graphs have bounded clique-width. Thus, also ($P_1+2P_2$,triangle)-free graphs have bounded clique-width which solves another open problem of Dabrowski and Paulusma. Meanwhile we were informed by Paulusma that in December 2015, Dabrowski, Dross and Paulusma showed that ($S_{1,2,2}$,triangle)-free graphs (and some other graph classes) have bounded clique-width.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.