Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multivariate Hawkes Process with Gaps in Observations (1608.01282v3)

Published 3 Aug 2016 in stat.ML, cs.IT, math.DS, math.IT, and math.NA

Abstract: Given a collection of entities (or nodes) in a network and our intermittent observations of activities from each entity, an important problem is to learn the hidden edges depicting directional relationships among these entities. Here, we study causal relationships (excitations) that are realized by a multivariate Hawkes process. The multivariate Hawkes process (MHP) and its variations (spatio-temporal point processes) have been used to study contagion in earthquakes, crimes, neural spiking activities, the stock and foreign exchange markets, etc. In this paper, we consider the multivariate Hawkes process with gaps in observations (MHPG). We propose a variational problem for detecting sparsely hidden relationships with a multivariate Hawkes process that takes into account the gaps from each entity. We bypass the problem of dealing with a large amount of missing events by introducing a small number of unknown boundary conditions. In the case where our observations are sparse (e.g. from 10% to 30%), we show through numerical simulations that robust recovery with MHPG is still possible even if the lengths of the observed intervals are small but they are chosen accordingly. The numerical results also show that the knowledge of gaps and imposing the right boundary conditions are very crucial in discovering the underlying patterns and hidden relationships.

Citations (10)

Summary

We haven't generated a summary for this paper yet.