Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Low-Dimensional Shaping for High-Dimensional Lattice Codes (1608.01267v1)

Published 3 Aug 2016 in cs.IT and math.IT

Abstract: We propose two low-complexity lattice code constructions that have competitive coding and shaping gains. The first construction, named systematic Voronoi shaping, maps short blocks of integers to the dithered Voronoi integers, which are dithered integers that are uniformly distributed over the Voronoi region of a low-dimensional shaping lattice. Then, these dithered Voronoi integers are encoded using a high-dimensional lattice retaining the same shaping and coding gains of low and high-dimensional lattices. A drawback to this construction is that there is no isomorphism between the underlying message and the lattice code, preventing its use in applications such as compute-and- forward. Therefore we propose a second construction, called mixed nested lattice codes, in which a high-dimensional coding lattice is nested inside a concatenation of low-dimensional shaping lattices. This construction not only retains the same shaping/coding gains as first construction but also provides the desired algebraic structure. We numerically study these methods, for point-to-point channels as well as compute-and-forward using low-density lattice codes (LDLCs) as coding lattices and E8 and Barnes-Wall as shaping lattices. Numerical results indicate a shaping gain of up to 0.86 dB, compared to the state-of-the-art of 0.4 dB; furthermore, the proposed method has lower complexity than state-of-the-art approaches.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube