Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Learning Common and Specific Features for RGB-D Semantic Segmentation with Deconvolutional Networks (1608.01082v1)

Published 3 Aug 2016 in cs.CV

Abstract: In this paper, we tackle the problem of RGB-D semantic segmentation of indoor images. We take advantage of deconvolutional networks which can predict pixel-wise class labels, and develop a new structure for deconvolution of multiple modalities. We propose a novel feature transformation network to bridge the convolutional networks and deconvolutional networks. In the feature transformation network, we correlate the two modalities by discovering common features between them, as well as characterize each modality by discovering modality specific features. With the common features, we not only closely correlate the two modalities, but also allow them to borrow features from each other to enhance the representation of shared information. With specific features, we capture the visual patterns that are only visible in one modality. The proposed network achieves competitive segmentation accuracy on NYU depth dataset V1 and V2.

Citations (143)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.