Efficient Segmental Cascades for Speech Recognition (1608.00929v1)
Abstract: Discriminative segmental models offer a way to incorporate flexible feature functions into speech recognition. However, their appeal has been limited by their computational requirements, due to the large number of possible segments to consider. Multi-pass cascades of segmental models introduce features of increasing complexity in different passes, where in each pass a segmental model rescores lattices produced by a previous (simpler) segmental model. In this paper, we explore several ways of making segmental cascades efficient and practical: reducing the feature set in the first pass, frame subsampling, and various pruning approaches. In experiments on phonetic recognition, we find that with a combination of such techniques, it is possible to maintain competitive performance while greatly reducing decoding, pruning, and training time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.