Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detection of opinion spam based on anomalous rating deviation (1608.00684v1)

Published 2 Aug 2016 in cs.SI

Abstract: The publication of fake reviews by parties with vested interests has become a severe problem for consumers who use online product reviews in their decision making. To counter this problem a number of methods for detecting these fake reviews, termed opinion spam, have been proposed. However, to date, many of these methods focus on analysis of review text, making them unsuitable for many review systems where accom-panying text is optional, or not possible. Moreover, these approaches are often computationally expensive, requiring extensive resources to handle text analysis over the scale of data typically involved. In this paper, we consider opinion spammers manipulation of average ratings for products, focusing on dif-ferences between spammer ratings and the majority opinion of honest reviewers. We propose a lightweight, effective method for detecting opinion spammers based on these differences. This method uses binomial regression to identify reviewers having an anomalous proportion of ratings that deviate from the majority opinion. Experiments on real-world and synthetic data show that our approach is able to successfully iden-tify opinion spammers. Comparison with the current state-of-the-art approach, also based only on ratings, shows that our method is able to achieve similar detection accuracy while removing the need for assump-tions regarding probabilities of spam and non-spam reviews and reducing the heavy computation required for learning.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.