Papers
Topics
Authors
Recent
2000 character limit reached

Attention Tree: Learning Hierarchies of Visual Features for Large-Scale Image Recognition (1608.00611v1)

Published 1 Aug 2016 in cs.CV, cs.LG, and cs.NE

Abstract: One of the key challenges in machine learning is to design a computationally efficient multi-class classifier while maintaining the output accuracy and performance. In this paper, we present a tree-based classifier: Attention Tree (ATree) for large-scale image classification that uses recursive Adaboost training to construct a visual attention hierarchy. The proposed attention model is inspired from the biological 'selective tuning mechanism for cortical visual processing'. We exploit the inherent feature similarity across images in datasets to identify the input variability and use recursive optimization procedure, to determine data partitioning at each node, thereby, learning the attention hierarchy. A set of binary classifiers is organized on top of the learnt hierarchy to minimize the overall test-time complexity. The attention model maximizes the margins for the binary classifiers for optimal decision boundary modelling, leading to better performance at minimal complexity. The proposed framework has been evaluated on both Caltech-256 and SUN datasets and achieves accuracy improvement over state-of-the-art tree-based methods at significantly lower computational cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.