Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse vs. Non-sparse: Which One Is Better for Practical Visual Tracking? (1608.00168v1)

Published 30 Jul 2016 in cs.CV

Abstract: Recently, sparse representation based visual tracking methods have attracted increasing attention in the computer vision community. Although achieve superior performance to traditional tracking methods, however, a basic problem has not been answered yet --- that whether the sparsity constrain is really needed for visual tracking? To answer this question, in this paper, we first propose a robust non-sparse representation based tracker and then conduct extensive experiments to compare it against several state-of-the-art sparse representation based trackers. Our experiment results and analysis indicate that the proposed non-sparse tracker achieved competitive tracking accuracy with sparse trackers while having faster running speed, which support our non-sparse tracker to be used in practical applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.