Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Linear Algebraic Approach to Datalog Evaluation (1608.00139v2)

Published 30 Jul 2016 in cs.AI

Abstract: In this paper, we propose a fundamentally new approach to Datalog evaluation. Given a linear Datalog program DB written using N constants and binary predicates, we first translate if-and-only-if completions of clauses in DB into a set Eq(DB) of matrix equations with a non-linear operation where relations in M_DB, the least Herbrand model of DB, are encoded as adjacency matrices. We then translate Eq(DB) into another, but purely linear matrix equations tilde_Eq(DB). It is proved that the least solution of tilde_Eq(DB) in the sense of matrix ordering is converted to the least solution of Eq(DB) and the latter gives M_DB as a set of adjacency matrices. Hence computing the least solution of tilde_Eq(DB) is equivalent to computing M_DB specified by DB. For a class of tail recursive programs and for some other types of programs, our approach achieves O(N3) time complexity irrespective of the number of variables in a clause since only matrix operations costing O(N3) or less are used. We conducted two experiments that compute the least Herbrand models of linear Datalog programs. The first experiment computes transitive closure of artificial data and real network data taken from the Koblenz Network Collection. The second one compared the proposed approach with the state-of-the-art symbolic systems including two Prolog systems and two ASP systems, in terms of computation time for a transitive closure program and the same generation program. In the experiment, it is observed that our linear algebraic approach runs 101 ~ 104 times faster than the symbolic systems when data is not sparse. To appear in Theory and Practice of Logic Programming (TPLP).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube