Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Online Nonnegative Matrix Factorization with General Divergences (1608.00075v2)

Published 30 Jul 2016 in stat.ML, cs.IT, cs.NA, math.IT, and math.OC

Abstract: We develop a unified and systematic framework for performing online nonnegative matrix factorization under a wide variety of important divergences. The online nature of our algorithm makes it particularly amenable to large-scale data. We prove that the sequence of learned dictionaries converges almost surely to the set of critical points of the expected loss function. We do so by leveraging the theory of stochastic approximations and projected dynamical systems. This result substantially generalizes the previous results obtained only for the squared-$\ell_2$ loss. Moreover, the novel techniques involved in our analysis open new avenues for analyzing similar matrix factorization problems. The computational efficiency and the quality of the learned dictionary of our algorithm are verified empirically on both synthetic and real datasets. In particular, on the tasks of topic learning, shadow removal and image denoising, our algorithm achieves superior trade-offs between the quality of learned dictionary and running time over the batch and other online NMF algorithms.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.